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A core tension in the operations of online marketplaces is between segmentation (wherein platforms can

increase revenue by segmenting the market into ever smaller sub-markets) and thickness (wherein the size of

the sub-market affects the utility experienced by an agent). An important example of this is in dynamic online

marketplaces, where buyers and sellers, in addition to preferences for differentmatches, also have finite patience

(or deadlines) for being matched. We formalize this trade-off via a novel optimization problem that we term as

‘Two-sided Facility Location’: we consider a market wherein agents arrive at nodes embedded in an underlying

metric space, where the distance between a buyer and seller captures the quality of the corresponding match.

The platform posts prices and wages at the nodes, and opens a set of virtual clearinghouses where agents

are routed for matching. To ensure high match-quality, the platform imposes a distance constraint between

an agent and its clearinghouse; to ensure thickness, the platform requires the flow to any clearinghouse be

at least a pre-specified lower bound. Subject to these constraints, the goal of the platform is to maximize

the social surplus subject to weak budget balance, i.e., profit being non-negative. Our work characterizes

the complexity of this problem by providing both hardness results as well as algorithms for this setting; in

particular, we present an algorithm that for any constant ϵ > 0 yields a (1 + ϵ) approximation for the gains

from trade, while relaxing the match quality (i.e., maximum distance of any match) by a constant factor.
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1 INTRODUCTION
Online marketplaces have transformed the economic landscape of the modern world. Many of

today’s most important companies are platforms facilitating trade between agents: both for goods

(Amazon, eBay), and increasingly, services (Lyft, Uber, Airbnb, etc). These platforms enable fine-

grainedmonitoring, and greater control via pricing [9], terms of trade, recommendation and directed

search [8], etc. The challenge of harnessing this increase in data and control has led to a growing

literature in online marketplace design.

The basic algorithmic challenge facing a marketplace platform can be summarized as follows: it

must decide which buyer should match to which seller, at what time, and for what price and wage,
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in order to maximize some desired objective. Though this description has much in common with

other mechanism-design problems in settings such as resource allocation and monopolist pricing

problems, there are a few features unique to two-sided markets which makes them particularly chal-

lenging. One notable such feature is the tension arising from the need for ensuring budget balance
(i.e., non-negative profits) – in particular, the problem of maximizing social welfare while respecting

budget-balance is at the heart of the famous Myerson-Satterthwaite impossibility result [30], and

has received much attention in recent work in approximate mechanism-design [10, 12]. At its heart,

however, lies the tension between balancing earnings and costs which is necessitated when one

moves from a one-sided to a two-sided setting.

Our work studies another unique feature of two-sided markets – the tension between market

segmentation and market thickness. At a high level, segmenting agents on both sides of a market

into smaller sub-markets leads to better welfare and higher revenues in many settings; on the other

hand, the quality of experience of an agent in a market improves when more agents are present on

the other side. Ensuring both turns out to present severe computational challenges for the market

maker in terms of pricing and scheduling policies. In particular, our core algorithmic insight is that
resolving the segmentation-thickness tradeoff in two-sided markets is intimately related to a classical
‘hard’ problem in combinatorial optimization: facility location.

Before presenting this, however, we first present a natural setting that naturally exhibits the

segmentation-thickness trade-off, and which forms the primary motivation for our work.

Dynamic Marketplaces with QoS Guarantees: Our motivating application is the design of a

dynamic marketplace platform, and in particular, policies for pricing both buyers and sellers, and

scheduling feasible matches, while providing quality of service (QoS) guarantees to the agents. To

understand how this results in a segmentation-thickness tradeoff, it is useful to build up the setting

piece-by-piece.

Pricing, matching and market segmentation: Consider first a simple two-sided market setting,

where buyers and sellers are characterized by a public type and there is a single service they are

interested in trading. Buyers have values, and sellers have costs, and these are drawn from known

type-dependent distributions. For instance, on a platform like AirBnB, the type of a listing can

represent some combination of geographic location and quality of room; on a freelancing platform,

the type of a consultant can capture their skill set and the type of a task can capture its requirements;

and so on.

Suppose we now incorporate dynamics as follows. Buyers and sellers belong to discrete types,

and agents of any type arrive at a steady Poisson rate. Buyers accept prices that are lower than
their value, and sellers accept wages that are higher than their costs, and the prices and wages set

for different types determine the rates of arrival. We further assume buyer and seller types are

located in a metric space. Typically, the buyer would be happy as long as the seller a reasonable

match with her requirements, so that there is an upper bound on the metric distance of any feasible

match. We will use “type" and “node" interchangeably.

A policy for the platform is to (i) set a per-type price (for buyers) and wage (for sellers); and

(ii) schedule feasible matches between the arriving buyers and sellers who accept the price/wage.

The goal of this process can be to maximize social surplus, or revenue, or even more complex

combinations such as maximizing surplus subject to a minimum revenue guarantee. Nevertheless,

for all such objectives, finding the optimal policy is not difficult – in particular, it is given by a

convex flow program with prices/wages set in a fashion to balance the rates of flow from buyers to

sellers and maximize social surplus. Moreover, note that such a flow program formally encodes the

idea of market segmentation.
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Impatient agents and the role of thickness: Now consider what happens when buyers and sellers

have a patience level. They observe the price/wage, and accept/reject it. If they accept, the platform

may not immediately be able to match them because a feasible match may not exist at that very

moment. This will cause the buyers and sellers to wait. However, if they are not matched by the

time their patience expires, they will abandon the system. The pricing and scheduling policy of

the platform needs to make sure the abandonment probability is very small, since this causes

dissatisfaction with the platform. Patience is a real constraint in two-sided platforms; for instance,

Uber has recently introduced pricing for buyers with different patience levels [1].

Finding the optimal policy for scheduling matches under an abandonment constraint is a difficult

stochastic control problem (see Section 4 for details); however, a commonly-used class of policies

which admits tractable analysis is one where the platform “pools" arriving demand and supply at

close-by nodes, which correspond to clearinghouses for matching – we alternately refer to these

as “facilities", for reasons which will become clear soon. Demand and supply is probabilistically

routed to facilities, and agents routed to a single facility are matched optimally. For such policies to

have abandonment probability below a threshold, we show in Section 4 that two natural conditions

are sufficient: (i) the rate of arrival of supply and demand to a facility are equal; and (ii) this rate

is at least a certain threshold, so that agents find feasible matches with high probability, i.e., the
facility is sufficiently thick. In essence, the aim of the platform is to ensure that the time for finding

a match is on average much smaller than the patience of any buyer or seller.

The above setting thus naturally encodes the segmentation-thickness tradeoff: on one hand,

the convex flow problem tries to segment agent types into smaller flows in order to maximize the

platforms’ objectives; on the other hand, the need to ensure sufficient thickness at the clearinghouses

places limits on the optimization. Crucially, the addition of the thickness constraints destroys the

underlying convexity of the problem, and makes it much more computationally challenging – this

is brought out by relating this problem to the facility-location problem, as we do next.

Before proceeding, we make a few remarks on the above model. We assume the set of different

types and their embedding into a metric space is constructed by the platform based on features of

the agents in a way that metric distance captures the quality of a match; however, these are not

necessarily known to the agents. This provides justification for the assumption that the value (or

cost) of each agent is decoupled from the metric distance. For the same reason, agents cannot choose

to arrive as a different type. Moreover, note that the clearinghouses are not physical locations,

but rather canonical types. An agent can be assigned this canonical type if (s)he has a type that

is within a distance threshold and our policy will be constrained to match agents such that the

corresponding canonical types are the same. For instance, these could be canonical room types on

a renting portal, or canonical skill sets on a freelancing platform. Hence we assume there are no

facility costs.

1.1 From Two-Sided Markets to Facility Location
One of our contributions (Section 4) is the reduction of a natural class of stochastic control policies

for the dynamic pricing and scheduling problem described above to a static problem of locating

facilities in the metric space so that these facilities are sufficiently thick. In the resulting facility

location problem, buyers and sellers flow into nodes located in a metric space. The price (resp.

wage) set at any buyer (resp. seller) node determines the volume of flow at that node. The platform

needs to (i) open facilities in the metric space; (ii) assign prices and wages to each node; and

(iii) probabilistically route the resulting flow to the open facilities so that the following service

guarantees are satisfied:
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(1) Quality of service guarantees: The flow assigned to a facility is from supply and demand

nodes within distance R. (This ensures any matched demand/supply is within distance 2R.)
(2) Service availability guarantees: Each facility needs to have flow balance, that is, equal amount

of supply and demand is routed there. Further, there is a lower bound L on the flow routed to

each facility, capturing the thickness constraint. As mentioned before, in Section 4, we show

that these constraints arise from natural stochastic matching policies for dynamically arriving

impatient agents.

The platform’s objective is to maximize the gains from trade or social surplus, which is total value

of buyers minus total cost of sellers, subject to weak budget balance, meaning the platform has

non-negative total profit. We term this optimization problem as Two-sided Facility Location.

Such a facility location model enables us to abstract out the stochastic dynamics of scheduling

with deadlines, and focus on studying the interplay between pricing and the service guarantee of

finding good quality matches with high probability. Note that if we ignore the flow lower bound

constraint, there is indeed a convex program for maximizing surplus. However, this may set prices

and wages in such a fashion that there may not be enough nearby supply (resp. demand) to ensure

thickness and prevent abandonment. On the other hand, if we do take the lower bounds into

account, this may cause the prices (resp wages) to be set so low (resp. high) that the platform loses

money. We illustrate this trade-off in an example in Appendix A.1, which shows that with a flow

lower bound constraint, the platform can obtain much larger surplus by losing money on one

facility, and making up for this loss at other facilities.

In summary, there is a three-way tension between the goals of maximizing surplus, platform

profitability, and the service guarantees described above. Our problem formulation of Two-sided
Facility Location captures this trade-off, and understanding the computational complexity of this

problem is the main focus of this paper. Our model is sufficiently flexible to accommodate more

complex extensions, and we present an extension to pricing patience in Appendix C.

1.2 Our Results
Our main contribution in Sections 2–3 is to show an approximation algorithm for Two Sided Facility
Location. We present a new LP rounding framework that for any constant ϵ > 0, achieves a (1 + ϵ)
approximation to the social surplus objective. It relaxes the distance bound constraint by a factor

of 4, while preserving the budget balance constraint, as well as the flow balance and lower bound

constraints at each facility. If we allow a tiny additive error ∆ in the surplus objective, our algorithm

requires solvingO
(
n1/ϵ

ϵ log
nWmax

ϵ∆

)
LPs, where n is the number of nodes, andWmax is the maximum

possible surplus.

We show in Section 3.1 that the surplus objective is NP-Hard to approximate to a factor o(Lξ )
for some constant ξ > 0, unless the distance bound is relaxed by at least a factor of 2.

Techniques. Our facility location variants mirror the profit earning facility location problem in [29].

Just like that setting, we have lower bounds on demand served at each facility and an upper bound on

how far the facility can be from an assigned demand. However, there are key differences that preclude

the application of existing techniques from lower-balanced facility location [20, 21, 25, 29, 32]: First,

the demand or supply at each node is a variable that can be adjusted using pricing. This means

the demand/supply can be zero at some “outlier" nodes, so that they do not need to be served by

any facility. Secondly, each facility needs to satisfy flow balance between supply and demand, and

finally, both surplus and profit involve differences, so the platform can potentially lose money at

some facilities, but recover it at others.
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The above differences make formulating an LP relaxation tricky. Note that even in [29], the

version with outliers and profits that can become negative has unbounded integrality gap, because

the optimal profit can be zero while the LP achieves positive profit. Unlike [29], since we can

control demand/supply by pricing, we have greater flexibility in modifying the LP variables. Despite

this, the integrality gap of the straightforward LP formulation for our problem is large, because

there could be a facility that generates a bulk of the surplus, but has large negative profit that is

compensated by other facilities. (See Appendix A.2 for an example).

This brings up our main technical contributions: We first observe that if we focus on the LP

variables corresponding to a facility, we can scale these up or down by changing the fraction to

which this node is an outlier. This enables us to use techniques reminiscent of improved greedy

algorithms for budgeted coverage problems [18, 26]: In particular, we strengthen the LP formulation
via guessing a few of the facilities that are opened in the optimal solution. Next, we use the guesses

to develop a structural characterization for this stronger LP based on modifying variables for pairs
of facilities. In effect this shows that there is some integrality in the neighborhood of any partially

open facility, which helps us consolidate these facilities while preserving all constraints.

1.3 Related Work
Two-sided Markets. Our objective maximizes social surplus subject to budget balance (and in-

dividual rationality). This is a classic objective in two-sided market mechanisms, and originates

in the celebrated work of Myerson and Satterthwaite [30], where it is termed gains of trade.
They considered the case of a single buyer and seller. This has inspired a recent line of work on

truthful mechanisms for approximate surplus maximization in markets of multiple buyers and

sellers [10, 12, 28], ultimately resulting in a 2-approximation to gains of trade. This line of work

assumes buyers and sellers are matched in one shot. The novelty in our work is in modeling

a dynamic setting and incorporating service availability guarantees while preserving the same

objectives. We therefore consider the more natural class of mechanisms that post prices and wages.

Posted price mechanisms have been extensively studied in two-sided marketplaces [6, 28, 31, 34],

and the main idea we borrow from this literature is the notion of insulating tariffs [34], which posits

that market design is easier if the prices seen by buyers is disconnected from the wages seen by

service providers.

Another recent line of work shows approximately optimal mechanisms for maximizing welfare

in two sided markets with goods [16, 17]; however, theirs is a sum objective defined in terms of the

final sets of items allocated to each buyer and seller, which is different from the gains of trade.

Dynamic Marketplaces. Our work on dynamic marketplaces is related to several recent works on

online scheduling under stochastic arrivals of tasks on machines with limited resources [14, 15, 23].

Tasks have (private) types comprising their value, arrival time, and deadline; the platform’s goal

is to maximize welfare while truthfully eliciting the type. While similar to our work on pricing

resources or tasks, they allow agents to choose assignments based on posted prices (envy-freeness).
Another difference is the markets considered in their studies are one-sided.

Dynamic two-sided markets also serve as motivation for recent work on “online matching with

delays" [7, 19]. Here, buyers and sellers arrive online in a metric space, and can be matched at

any time subsequently. The goal is to minimize the total distance cost plus waiting cost, and the

authors present a log-competitive algorithm. These models do not incorporate pricing. Further,

our dynamic marketplace models are more closely related to dynamic matchings with stochastic
arrivals, and we review this literature in Section 4.
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2 PROBLEM STATEMENT
There is a metric space G(V ,E) with an associated distance function c . The two sided facility

location problem is parametrized as Two-Sided Fac-Loc(L,R). Here, R is the distance threshold

for assignment to a facility and L is the lower bound on flow routed to each open facility.

Each node j ∈ V is associated with a demand function Fj and a supply function Hj . When

offered price p, we assume the demand (i.e., buyers) at node j is djFj (p), where Fj (p) is a non-

increasing function of p corresponding to the survival function of a continuous density function fj
on valuations; formally Fj (p) =

∫ ∞
v=p fj (v)dv . In other words, the volume of buyers is dj , and when

quoted a price p, only buyers with valuations at least p choose to participate. We assume there is a

finite price pmax so that Fj (pmax) = 0 for all j ∈ V .

Similarly, when offered wage w , the supply of sellers at node j is sjHj (w), where Hj (w) is a
non-decreasing function of w , corresponding to the CDF of a continuous density function hj
on costs; formally Hj (w) =

∫ w
c=0

hj (c)dc . When offered wage w , all sellers with cost at most w
participate, resulting in supply sjHj (w). We assume that Hj (0) = 0, i.e., sellers accrue 0 utility by

not participating in the platform.

Let F ⊆ V the set of all candidate facilities; we set F = V . For each node j, BR (j) ⊆ F denotes

the set of all compatible facilities, i.e., i ∈ F such that c(i, j) ≤ R. Similarly, for each facility i ,
we define BR (i) as the set of all compatible nodes, i.e., j ∈ V such that c(i, j) ≤ R. A solution to

Two-Sided Fac-Loc(L,R) is specified by the following:

• An assignment of price pj and wagew j to each node j ∈ V . If the price (resp. wage) at node j
is pmax (resp. 0), we assume this node generates no demand (resp. supply).

• A set of locations S ⊆ F for opening the facilities; and

• A routing scheme
®xdj (resp.

®xsj ) for each demand (resp. supply) node j ∈ V that generates

non-zero demand (resp. supply). For facility i ∈ S , if xdi j > 0 then i ∈ BR (j) (i.e., i is a

compatible node for facility j). Further,
∑

i ∈BR (j) x
d
i j = 1 for all nodes j ∈ V that generate

non-zero demand; similarly,

∑
i ∈BR (j) x

s
i j = 1 for each j ∈ V with non-zero supply.

Note that the flow of demand (resp. supply) from node j ∈ V to facility i ∈ S is djFj (pj )x
d
i j (resp.

sjHj (w j )x
s
i j ). As motivated in Section 1.1, the flows need to satisfy the flow balance and flow lower

bound conditions at each facility i ∈ S :

Flow Balance. The total amount of supply and demand are equal,

Flow Lower Bound. The total amount of supply (resp. demand) routed there is at least L.

Both these desiderata can be formalized via the following constraint:∑
j

djFj (pj )x
d
i j =

∑
j

sjHj (w j )x
s
i j ≥ L, for all i ∈ S .

Surplus (Gains from Trade) Objective. We first define the following quantities:

Vj (p) = dj

∫ ∞

v=p
v fj (v)dv and Cj (w) = sj

∫ w

c=0

chj (c)dc

respectively denote the total value of buyers generated by node j when the price there is p and the

cost of sellers at node j when the wage there isw . The surplus objective can then be written as:

Social Surplus =

∑
j ∈V

(
Vj (pj ) − Cj (w j )

)
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The goal of the platform is to maximize social surplus subject to the platform profit being

non-negative. This is termed weak budget balance, and is written as:

Profit =
∑
j ∈V

(
djpjFj (pj ) − sjw jHj (w j )

)
≥ 0

Note that simply maximizing surplus may not guarantee non-negative profit because of the flow

lower bound constraint. We illustrate this in an example in Appendix A.1.

In this section, we make the standard regularity assumptions (à la Myerson-Satterthwaite [30])

on the density functions fj and hj . In particular, we assume xF−1

j (x) is concave in x and yH−1

j (y) is
convex in y. This is true for instance, for all log-concave densities fj and hj , which includes Normal,

Exponential, and Uniform distributions.

3 APPROXIMATION ALGORITHM
We characterize the approximation ratio of any algorithm for Two-Sided Fac-Loc(L,R) as (α ,γ ),
if the resulting solution relaxes the distance bound of an assignment to a facility to αR, ensures
lower bound L, and has surplus OPT /γ , where OPT is the optimal surplus. First, we show that it is

NP-Hard to obtain γ = o(Lξ ) for some constant ξ > 0, unless α ≥ 2. Subsequently, we present a

(4, 1 + ϵ) approximation. For the algorithm to have polynomial running time, they also need lose a

small additive amount in the objective; as we show later, this quantity can be exponentially small.

3.1 Hardness of Approximation
Theorem 3.1. It is NP-Hard to find a (α ,γ ) approximation for Two-Sided Fac-Loc(L,R) unless

α ≥ 2 or γ ≥ Lξ for some constant ξ > 0.

Proof. We reduce from Maximum Independent Set in k-regular graphs (k-MIS). Given a k-MIS

instance with n vertices andm = kn/2 edges, construct a metric space where each edge in the

k-regular graph G(V ,E) has length 2R. Place a demand node at the mid-point of each edge, and

a supply node at each vertex. We set L = k . Each supply node has sj = k , and supply function

H−1(r ) = 1 − δ for r ∈ [0, 1]. Similarly, each demand node has dj = 1, and demand function

F−1(q) = 1 for q ∈ [0, 1]. Since the distance threshold is R, the facilities are opened at vertices of

the graph. Each such facility must see k units of supply and demand, which means all neighboring

demand is routed there, leading to welfare (resp. profit) kδ at that facility. Since two open facilities

cannot share a demand, this means the open facilities form an independent set. Therefore, the

surplus of Two-Sided Fac-Loc(k,R) is δ times the size of the maximum independent set inG . This
is NP-hard to approximate to within a factor of kξ for some constant ξ > 0; see [5, 24]. Therefore,

we need to relax the distance bound by at least a factor of 2. □

3.2 Linear Programming Relaxation
We now formulate Two-Sided Fac-Loc(L,R) as an integer linear program. For ease of exposition,

we compare against an optimal solution that is restricted to using prices from a fixed set P and

wages from a fixed setW. Our solution is not restricted to using prices and wages from this set.

In Appendix B, we show that our LP admits to a polynomial time solution of arbitrary additive

accuracy when this assumption is relaxed, and demand/supply distributions are continuous.

Note that we assume pmax ∈ P and 0 ∈ W, and at this price (resp. wage) the demand (resp.

supply) is identically zero. This is the price (resp. wage) where this node becomes an outlier and

the solution is not required to open a facility nearby.

Instead of writing our LP using prices and wages, we use the associated demand/supply values.

Let Qj = {q |q = Fj (p),p ∈ P} and Rj = {r | r = Hj (w),w ∈ W}. The case where the node is an
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outlier now corresponds to setting q = 0 (resp. r = 0). Moreover, the valuations/costs can also be

redefined using supply/demand values as follows:

Vj (q) = dj

∫ ∞

v=F −1

j (q)
v fj (v)dv and Cj (r ) = sj

∫ H−1

j (r )

c=0

chj (c)dc (1)

respectively denote the total value of buyers generated by node j when the price there is F−1

j (q),

and the cost of sellers at node j when the wage there is H−1

j (r ).

Variables. For each candidate facility i ∈ F , let yi ∈ {0, 1} be the indicator variable that a facility
is opened at that location in the metric space. Let α jq = 1 if the price at node j ∈ V corresponds to

q ∈ Qj . Similarly define βjr for r ∈ Rj . The variable zi jq is non-zero only if α jq = 1 and i ∈ BR (j).
In this case, it is the fraction of j’s demand that is routed to i . We define zi jr similarly for supply.

Note that the actual flow from j to i is djqzi jq ; similarly for sellers.

Objective and Weak Budget Balance. The objective of social surplus and the profit being non-

negative can be captured by:

• Surplus Objective:

max

∑
j ∈V

©­«
∑
q∈Qj

α jqVj (q) −
∑
r ∈Rj

βjrCj (r )
ª®¬ (2)

• Weak Budget Balance: ∑
j ∈V

©­«
∑
q∈Qj

α jqdjqF
−1

j (q) −
∑
r ∈Rj

βjr sjrH
−1

j (r )
ª®¬ ≥ 0 (3)

Feasibility. The following constraints connect the variables together. We present these constraints

only for buyers (that is, q ∈ Qj ); the constraints for sellers is obtained by replacing q with r ∈ Rj .
First, for each q ∈ Qj , we need to choose one price for buyers (resp. sellers).∑

q∈Qj

α jq = 1 ∀j ∈ V (4)∑
i ∈BR (j)

zi jq = α jq ∀j ∈ V ,q ∈ Qj (5)

Next, if demand is fractionally routed from j to i , then i should be open and within distance R.
Note that we need to ignore the case where q = 0 (resp. r = 0) since in this case, the demand (resp.

supply) routed is zero, so that there is no need for a nearby facility.∑
q∈Qj ,q>0

zi jq ≤ yi ∀j ∈ V , i ∈ BR (j) (6)

Service Availability. We finally encode flow balance and flow lower bound at each facility:∑
j ∈BR (i)

dj
∑
q∈Qj

qzi jq =
∑

j ∈BR (i)

sj
∑
r ∈Rj

rzi jr ∀i ∈ F (7)∑
j ∈BR (i)

dj
∑
q∈Qj

qzi jq ≥ Lyi ∀i ∈ F (8)

If we replace the integrality constraints on {yi } and the {α jq , βjr } with yi ,α jq , βjr ∈ [0, 1], the
above is a linear programming relaxation of the problem.
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3.3 Integrality Gap and Stronger LP Formulation
The main technical hurdle arises because of the flow lower bound constraint: The LP optimum (and

even an integer optimum) can now open facilities i which have positive surplus but negative profit,

and compensate for the loss in profit by other facilities with positive profit. (See Appendix A.1 for

an example.) Note that Constraints (6) and (4) together imply:∑
i ∈BR (j)

yi ≥ 1 − α j0 ∀ Demand nodes j

and similarly for supply nodes. We call the quantities α j0 (resp. βj0) the outlier fraction of node

j, and correspond to the case where the node is priced in such a way that it does not generate

flow. In this case, there is no need to open a facility to satisfy j. Therefore, if α j0βj0 > 0, then the

above constraints could imply

∑
i ∈BR (j) yi < 1. This means there could only be a small fractional

facility open in the vicinity of j , which can account for a lot of the surplus. This makes the LP have

super-polynomial integrality gap and we present an example in Appendix A.2.

Our first technical contribution involves adding constraints to the above LP formulation to bound

its integrality gap. Before showing how to strengthen the LP, we present the following easy claim,

which implies that once we round {yi }, the remaining solution can easily be made integral.

Lemma 3.2. Given any feasible LP solution, there is an equivalent solution that assigns only one
price (resp. wage) per demand (resp. supply) node, that preserves all constraints and does not decrease
the objective.

Proof. The rounding of α jq , βjr is simple. Let q̂j =
∑
q∈Qj qα jq and r̂ j =

∑
r ∈Rj rβjr . Set the

price of location j to be F−1

j (q̂j ) and the wage at j to be H−1

j (r̂ j ). In other words, set α̂ jq̂j← 1 and

ˆβj r̂ j← 1. Further set ẑi jq̂j ←
∑
q∈Q′j

zi jq
q
q̂j

and ẑi j r̂ j ←
∑

r ∈R′j
zi jr

r
r̂ j
.

Note that this process preserves the demand and supply from node j to facility i , which preserves

all the constraints in the LP formulation. Note further that the function qF−1

j (q) is concave in q by

the regularity of the demand function. Therefore,∑
q

α jqqF
−1

j (q) ≤

(∑
q

α jqq

)
F−1

j

(∑
q

α jqq

)
= q̂jF

−1

j (q̂j )

Similarly, sincewe assumed rH−1

j (r ) is convex in r (by regularity of supply), we have
∑

r βjr rH
−1

j (r ) ≥

r̂ jH
−1

j (r̂ j ). Therefore, this transformation preserves weak budget balance. Next, we note thatVj (q) is

always a concave function ofq and Cj (r ) is always a convex function. Therefore, the above argument

also implies the welfare (social surplus) does not decrease in the above transformation. □

Define a variable for the surplusWi and profit Ri of facility i respectively as:

Wi =
∑

j ∈BR (i)

©­«
∑
q∈Q′j

Vj (q)zi jq −
∑
r ∈R′j

Cj (r )zi jr
ª®¬ (9)

Ri =
∑

j ∈BR (i)

©­«
∑
q∈Q′j

djqF
−1

j (q)zi jq −
∑
r ∈R′j

sjrH
−1

j (r )zi jr
ª®¬ (10)

Then the objective can be rewritten as: Maximize

∑
iWi , and weak budget balance is

∑
i Ri ≥ 0.

Further note thatWi ≥ Ri since for any q, r , we haveVj (q) ≥ djqF
−1

j (q), and Cj (r ) ≤ sjrH
−1

j (r ) if

we integrate the expressions in Equation (1) by parts.
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Stronger LP Formulation. Let ϵ > 0 be any constant, and let θ = 1

ϵ . We guess the θ facilities

in the optimum solution that have the most surplus. There are two cases. First, if the optimum

solution opens fewer than θ facilities, we can perform a brute force search over all integer solutions

that open at most θ facilities. This can be done in O(nθ ) time, where n = |V |. For each selection of

facilities, Lemma 3.2 implies that solving the LP formulation with the corresponding yi set to 1 and

the rest to zero yields the optimal surplus (or results in declaring infeasibility). We can therefore

find the surplus maximizing solution among these in polynomial time; call this surplusW1.

In the other case, the optimum solution opens more than θ facilities. In this case, for every choice

of parameterW ≥ 0 scaled to powers of (1 + ϵ), and every subset S ⊆ F with |S | = θ , define
LP(W, S) as having all of Constraints (3) – (8), plus the following new ones:

Wi ≤ Wyi ∀i ∈ F \ S (11)

yi = 1 ∀i ∈ S (12)∑
i ∈S

Wi ≥ Wθ (1 − ϵ) (13)

Let OPT denote the optimum surplus, and also defineW2 = max{LP(W, S) |W ≥ 0, S s.t. |S | =
θ }. Then, it is easy to see that OPT ≤ max (W1,W2): If OPT opens fewer than θ facilities, then

clearlyW1 ≥ OPT , sinceW1 opens all possible choices of at most θ facilities. Otherwise, letW ∗i
denote the surplus generated by open facility i in OPT . LetW ∗ denote the θ th largest value ofW ∗i .
ChooseW ∈ [W ∗,W ∗(1 + ϵ)], and S as the set of θ facilities inOPT withW ∗i ≥W

∗
. This induces a

feasible solution to the above constraints, so that the LP optimum is at least OPT .

3.4 Structural Characterization of LP Optimum
Our second technical contribution is a new structural characterization about the LP optimum. This

is crucial for the rounding that we present subsequently, since it allows sufficient mass of facility

to be located in roughly the same neighborhood.

Recall α j0, βj0 are the fractions to which node j is an outlier, i.e. has zero flow. These variables

are the reason the simpler LP had large integrality gap, since they allow facilities in BR (j) to be

open to small fractions. Our main observation is the following:

Lemma 3.3 (Structural Characterization). There is a (1+ ϵ) approximation to the objective of
LP(W, S) that satisfies:

∀i ∈ F , yi ∈ (0, 1) ⇒ ∃j ∈ BR (i) s.t. α j0βj0 = 0

High level Idea. Before presenting the proof, we present the high level idea. Consider a facility that
violates the statement. If it has Ri > 0, then consider all LP variables {yi , zi jq , zi jr } corresponding
to some such facility i and uniformly increase them. This increases both profit and surplus. We

can decrease the fractions {α j0, βj0} to which any node j connected to i is assigned as outlier

to compensate the fraction to which it is assigned i . Note that Constraints (7) and (8) are local

to a single facility. Since we scale up all variables corresponding to a facility, we preserve these

constraints. If we keep up this process, then either the facility is completely open (yi = 1); or some

demand/supply node assigned to it has α j0 = 0 or βj0 = 0. (This must hold in the LP optimum.)

On the other hand, ifWi > 0 but Ri < 0, then increasing its LP variables would hurt profit,

which may violate the budget balance constraint; while reducing the variables would increase profit

but hurt the surplus. The idea now is the following: Take any pair of such facilities; increase the

variables for one facility while decrease them for the other. There is always a way of doing this

so that both the total profit and surplus do not decrease – this is essentially a fractional knapsack
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argument. Again, since we uniformly scale all variables corresponding to a facility, we preserve all

constraints. Note that the process can also stop when a facility closes (yi = 0). Eventually, we run

out of pairs, so that for all but one facility, the above characterization holds.

At this point, the strengthened LP kicks in. The singleton facility violating the above lemma

was fractionally open and had Ri < 0. It has surplus at mostW by Constraint (11). But we have

integrally open facilities that generate surplus at leastW
(1−ϵ )
ϵ by Constraint (13), which means

closing the singleton facility reduces surplus by at most (1 − ϵ), and preserves budget balance.

Proof of Lemma 3.3. We first simplify the LP. Let Q ′j = Qj \ {0} and R
′
j = Rj \ {0}. Let ηj =∑

q∈Q′j
α jq andϕ j =

∑
r ∈R′j

βjr respectively denote the fractions to which j is assigned prices (wages)

that correspond to non-zero demand (supply). We can rewrite the constraints (4) and (5) as:

ηj =
∑
q∈Q′j

∑
i ∈BR (j)

zi jq ≤ 1 and ϕ j =
∑
r ∈R′j

∑
i ∈BR (j)

zi jr ≤ 1 ∀j ∈ V (14)

and set α j0 = 1 − ηj , and βj0 = 1 − ϕ j . Recall from Equations (9) and (10) thatWi and Ri are
respectively the surplus and profit of facility i in the LP optimum.

We call node j fully demand-utilized if ηj = 1, and fully supply-utilized if ϕ j = 1. We say that node

j is partially demand-connected to facility i ∈ F if

∑
q∈Q′j

zi jq > 0, and partially supply-connected if∑
r ∈R′j

zi jr > 0. Let JD (i) denote the set of nodes that are partially demand-connected to i ∈ F , and

JS (i) be the set that is partially supply-connected.

Lemma 3.4. In the LP optimum, for any i ∈ F with yi > 0, we haveWi > 0. Furthermore, all except
one facility with yi > 0 satisfy the following condition: either yi = 1; or there exists j ∈ JD (i), such
that j is fully demand-utilized; or there exists j ∈ JS (i) such that j is fully supply-utilized.

Proof. First, note thatWi ≥ Ri . Suppose an open facility hasWi ≤ 0. This implies Ri ≤ 0.

Consider a different solution that sets yi = 0 and zi jq = zi jr = 0 for all j ∈ V ,q ∈ Q ′j , r ∈ R
′
j . We

adjust ηj and ϕ j for each j ∈ V to preserve constraint (14). This new solution hasWi = Ri = 0 and

has at least as large surplus and profit. Since we set all LP variables corresponding to i to zero, this

satisfies constraints (6), (7), and (8), and is therefore feasible for the LP.

We therefore only focus on facilities whoseWi > 0. Consider the set of these facilities and split

them into two groups. Let

S1 = {i ∈ F |yi ∈ (0, 1) and Ri < 0} and S2 = {i ∈ F |yi ∈ (0, 1) and Ri ≥ 0}

Assume that for all of these facilities, there is no j ∈ JD (i), such that j is fully demand-utilized and
no j ∈ JS (i) such that j is fully supply-utilized
First consider the facilities in set S2, we can increase the LP variables till the condition of the

lemma is satisfied; this process only increases both profit and surplus, preserving all constraints.

We do this as follows: Suppose no j ∈ JD (i) is fully demand-utilized and no j ∈ JS (i) is fully
supply-utilized. In this case, let

θ = min

©­­­«
1

yi
, min

j ∈JD (i)

©­­«
1 −

∑
q∈Q′j

∑
i′,i zi′jq∑

q∈Q′j

zi jq

ª®®®¬ , min

j ∈JS (i)

©­­«
1 −

∑
r ∈R′j

∑
i′,i

zi′jr∑
r ∈R′j

zi jr

ª®®¬
ª®®®¬

Since ηj < 1 for all j ∈ JD (i) and ϕ j < 1 for all j ∈ JS (i), we have θ > 1. Suppose we increase yi ,
zi jq for all j ∈ JD (i),q ∈ Q

′
j , and zi jr for all j ∈ JS (i), r ∈ R

′
j by a factor of θ . We will still have

ηj ≤ 1 for all j ∈ JD (i) and ϕ j ≤ 1 for all j ∈ JS (i). However, either yi or one of these values will
become exactly 1. Note that since we scaled all LP variables corresponding to i by the same factor,
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this preserves constraints (6), (7), and (8). The surplus and profit of this facility increase by a factor

θ > 1, which contradicts the optimality of the LP solution. Therefore, the facilities in S2 all have a

neighboring j that is either fully demand-utilized or fully supply-utilized.

Next consider the facilities in set S1. Suppose the condition in the lemma is not satisfied, so that

there are two facilities i and i ′ with yi ,yi′ ∈ (0, 1), and with no neighboring j that is either fully
demand-utilized or fully supply-utilized. SupposeWi/|Ri | = a andWi′/|Ri′ | = b with a ≥ b. We

multiply each LP variable corresponding to i by a factor of (1 + δ ), and multiply each LP variable

corresponding to i ′ by a factor of

(
1 −

Wi
Wi′

δ
)
. Using the same argument as above, this process

preserves the constraints that are specific to a facility, since all variables are changed by the same

factor. The increase in surplus of facility i is δWi , and the decrease in surplus of facility i ′ is δWi ,

so the overall surplus is preserved. The decrease in profit of facility i is |Ri |δ , and the increase in

profit of facility i ′ is |Ri′ |
Wi
Wi′

δ ≥ |Ri |δ by our assumption that a ≥ b. Therefore, this process cannot

decrease profit, hence all constraints are preserved. We choose δ as the smallest value that either

makes facility i have yi = 1 or one neighboring j either fully supply or demand utilized, or that

sets the variables of facility i ′ to zero. In all cases, the size of set S1 reduces by one. We repeat this

process till there is only one facility in S1, completing the proof. □

The following corollary now restates Lemma 3.3, completing its proof.

Corollary 3.5. There is a (1 + ϵ)-approximation to the LP optimum where any facility with
yi > 0 satisfies the following condition: either yi = 1; or there exists j ∈ JD (i), such that j is fully
demand-utilized; or there exists j ∈ JS (i) such that j is fully supply-utilized.

Proof. By Constraint (12), there is a set of facilities S that are fully open (i.e., yi = 1) and∑
i ∈SWi ≥ W

1−ϵ
ϵ by Constraint (13). The rounding in Lemma 3.4 does not touch these facilities,

since we only increase/decrease variables corresponding to partially open facilities (i.e., those with
yi ∈ (0, 1)). Lemma 3.4 implies there is only facility i that violates the condition of the corollary.

This facility must have surplusWi ≤ Wyi ≤ W by Constraint (11). This means closing this facility

(setting all its associated variables to zero) reduces the LP optimum by at most a factor of (1 − ϵ).
Since the previous lemma implies this facility had Ri < 0, this means closing it only increases profit,

preserving weak budget balance. □

3.5 Rounding the LP Relaxation
The rounding now follows approaches similar to those in [20, 35]. We first present the high-level

idea. Note that if a node j has α j0 = 0 or βj0 = 0, then Constraint (6) implies

∑
i ∈BR (j) yi ≥ 1.

Consider an independent set of such nodes, such that no two are fractionally assigned to the same

facility. For any j in this set, move all partially open facilities in BR (j) to j itself, so that there is a

facility integrally opened at j. Since we move an entire facility, we preserve all flows, so that flow

balance and lower bound are preserved, and so is profit. Now a demand/supply can be assigned a

distance 2R away, and the opened facilities are integral.

At this point, consider any fractionally open facility i . It must have a node j adjacent to it that

satisfies the condition in Lemma 3.3. If j has a facility completely open at its location, then move i
to location j. Otherwise, j was not part of the independent set in the previous step, which means

j and j ′ shared a fractionally open facility, and the previous step opened a facility completely at

j ′. In this case, we move i to j ′, again preserving all flows. This means any demand/supply moves

distance at most 4R, preserving all the LP constraints.

3.5.1 Rounding Facilities. We now present the rounding algorithm in detail. Initially, all facilities

i ∈ F with yi > 0 are partially open. Node j ∈ V is untouched if for all i such that j ∈ JD (i) ∪ JS (i),
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the facility i is partially open. LetU be the set of untouched nodes, and let Z be the set that is either

fully demand-utilized or fully supply-utilized. LetUf = U ∩ Z .

Phase 1. Consider any j ∈ Uf . W.l.o.g., assume ηj = 1; the case where ϕ j = 1 is symmetric. Let

N (j) = {i |j ∈ JD (i)}. For every i ∈ N (j), we “move" i to location j; call the new facility at location j
as i∗. This means we set

• ȳi∗ ←
∑

i ∈N (j) yi and ȳi ← 0 ∀i ∈ N (j);
• z̄i∗ j′q ←

∑
i ∈N (j) zi j′q and z̄i j′q ← 0 ∀j ′ ∈ V ,q ∈ Qj′, i ∈ N (j)

• z̄i∗ j′r ←
∑

i ∈N (j) zi j′r and z̄i j′r ← 0 ∀j ′ ∈ V , r ∈ Rj′, i ∈ N (j)
From constraint (6), and the fact that ηj = 1, we have:

ȳi∗ =
∑

i ∈N (j)

yi ≥
∑

i ∈BR (j)

∑
q∈Q′j

zi jq = ηj = 1

Subsequently, we mark every i ∈ N (j) as closed, and mark i∗ as completely open. Furthermore, we

mark every j ′ that was reassigned in the above steps as touched.
Note that in the last three steps, any agents at a node j ′ that was initially assigned to i ∈ N (j) is

now assigned to i∗. Since each of the distances j ′→ i and i → j is at most R, the distance from j ′

to i∗ is at most 2R. Therefore, this step relaxes the distance of a feasible assignment to a facility

from R to 2R.
This process trivially preserves the objective and weak budget balance, as well as constraints

(14). Moreover, constraints (6) and (7) are satisfied since we add both sides of the constraints

corresponding to i ∈ N (j) to obtain the constraint for i∗. Finally, to see that (8) is satisfied for i∗,
note that ∑

j′∈JD (i∗)

∑
q∈Q′j′

dj′qz̄i∗ j′q =
∑

i ∈N (j)

∑
j′∈JD (i)

∑
q∈Q′j′

dj′qzi j′q ≥ L
∑

i ∈N (j)

yi ≥ L

We continue this process, finding a node j ∈ Uf , and merging all facilities in N (j) to one location.

At the end of this process, the setUf is empty.

Phase 2.At the end of Phase 1, each node j which is touched (including all fully utilized nodes) route
some fraction of their demand (or supply) to at least one facility that is completely open. However,

there could still be partially open facilities withyi ∈ (0, 1) to which demand and supply are assigned.

Consider these partially open facilities in arbitrary order. Suppose we are considering facility i
and there exists touched and fully utilized node j such that

∑
q∈Q′j

zi jq > 0 (resp.

∑
r ∈R′j

zi jr > 0).

Consider the completely open facility i∗ such that

∑
q∈Q′j

z̄i∗ jq > 0 or

∑
r ∈R′j

z̄i∗ jr > 0. We move the

facility i to location i∗, updating the variables just as in Phase 1; i.e., we set
• ȳi∗ ← ȳi∗ + yi and ȳi ← 0;

• z̄i∗ j′q ← z̄i∗ j′q + zi j′q and z̄i j′q ← 0 ∀j ′ ∈ V ,q ∈ Qj′
• z̄i∗ j′r ← z̄i∗ j′r + zi j′r and z̄i j′r ← 0 ∀j ′ ∈ V , r ∈ Rj′

The argument that all constraints are preserved follows just as before. For any j ′ that was partially
assigned to i , the new assignment is to i∗. This distance is at most

c(j ′, i∗) ≤ c(j ′, i) + c(i, j) + c(j, i∗) ≤ R + R + 2R = 4R

where we note that the distance j → i∗ was at most 2R because j was potentially reassigned to i∗

in Phase 1. We mark all nodes j ′ that are reassigned in this process as touched.

At the end of this process, suppose there are still partially open facilities with yi ∈ (0, 1). By
Corollary 3.5, each of these facilities i must have some j ∈ Z partially assigned to it. At the end of

Phase 1, we have the invariant that j < Uf , sinceUf is empty. This means j was touched on Phase 1.

But in that case, i must have been reassigned in Phase 2, which is a contradiction. Therefore, at
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this point, all facilities are either closed (ȳi = 0) or completely open (ȳi ≥ 1). Furthermore, for any

variable z̄i jq > 0 (resp. z̄i jr > 0), the facility i is completely open; the distance from j to i is at most

4R; for each completely open facility, the rate of supply equals the rate of demand (Constraint (7)),

and finally, the total flow is at least L (Constraint (8)).

3.5.2 Final Steps and Running Time. At this point, the facilities are opened integrally. Lemma 3.2

now implies that we can choose one price/wage per node preserving all constraints and the objective.

This completes the proof of the following theorem.

Theorem 3.6. For any constant ϵ > 0, there is a (4, 1+ ϵ) approximation algorithm for Two-Sided

Fac-Loc(L,R).

Note that the surplus can become arbitrarily close to zero. Therefore, for parameter ∆ > 0, we

will allow additive error ∆ in the surplus objective. Note that the maximum possible surplus is

Wmax = (
∑

j dj )pmax, which is an upper bound onW. If we assume the surplus is at least ∆, then
maxiW

∗
i ≥ ∆/n. Since the top 1/ϵ facilities on OPT have surplusW(1 − ϵ)/ϵ , this means we can

setW ≥ ϵ∆
2n Therefore, the number of choices ofW is O

(
1

ϵ log
nWmax

ϵ∆

)
. For each choice ofW,

we need to solve O(n1/ϵ ) LPs, so that the overall number of LPs is O
(
n1/ϵ

ϵ log
nWmax

ϵ∆

)
. Note that ∆

can be exponentially small, and our algorithm for solving the LP in Appendix B will lose such an

additive factor in the objective anyway. Omitting details, we note that if the objective is profit, we

can achieve optimal objective by directly rounding the single LP in Section 3.2 (details similar to

Appendix C).

4 QUEUEING-THEORETIC JUSTIFICATION: DYNAMIC MARKETPLACES
In the facility location model discussed above, we imposed a lower bound L on the flow routed

to any facility. We now present a dynamic marketplace model that provides queueing-theoretic

justification for these constraints. This model has the following features:

• Buyer and seller types are located in a metric space just as before.

• Buyers at node j arrive as a Poisson process with rate djFj (p) when quoted price p, and when

quoted a wagew ; similarly, sellers follow a Poisson process with rate sjHj (w).
• We assume each buyer and seller has a private patience level or deadline; if not matched within

their deadline, they abandon the system. The platform knows the patience distribution.

The stochastic control problem that we term dynamic marketplace problem can be summarized

by two control decisions:

(1) Pricing decision. Choose static prices pj and wagesw j at each node j ∈ V ; and

(2) Scheduling decision. This matches feasible buyer-seller pairs and removes them from the system.

This decision is dynamic, depending on the entire state of the system as captured by the number

of unmatched buyers and sellers at different nodes at any point of time.

The goal is to design a stochastic control policy that maximizes the long-term average surplus

subject to long-term budget balance. We insist all scheduled matches must involve a current buyer

and seller with metric distance at most R. The key difference is in the service availability guarantee:
Given the stochastic nature of our arrivals, there is always some probability that an incoming buyer

or seller exhausts her patience before being matched. A more realistic goal is to design policies

that guarantee a minimum level of service availability. We quantify this via the long-term average

probability of abandonment of agents. Formally, given a parameter ϵ > 0 as input, the goal of the

platform is to make the abandonment probability at most ϵ .

Scheduling Policies. Constructing the optimal policy for the dynamic marketplace problem is

closely related to several lines of work in dynamic matchings over a compatibility graph – in kidney
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exchanges [4] where patients abandon the exchange if their health fails; in control of matching

queues for housing allocation [13]; and more generally in service system design [2, 3, 22], wherein

customers and servers arrive stochastically and are matched according to a compatibility graph. In

all these models, the choice of whom to match an arriving agent to depends on the entire set of

agents waiting at different nodes, leading to the “curse of dimensionality".

Given this curse of dimensionality, we consider the restricted sub-class of matching policies

where the platform creates facilities in the metric space, and uses each facility to cater to a different

set of mutually-compatible agent types. Arriving agents are randomly routed to a compatible

facility, where they are queued up to be matched to agents on the other side. The probabilistic

routing is fixed over time, and does not depend on the state of the facilities.

Each facility maintains a queue of active buyers and sellers that have been assigned there,

ignores what location they came from, and matches them up using an optimal scheduling policy

for minimizing abandonment rate using only the current state of that particular queue. We will

enforce the constraint that for any facility, the long-term abandonment probability is at most ϵ ,
which in turn will ensure the overall abandonment probability is at most ϵ .

Now assume buyer deadlines are distributed as Exponential(κ), and seller deadlines are dis-

tributed as Exponential(γ ). Though these distributions are known, the scheduling decisions at

any facility are made without knowing the patience level of any individual agent. Then, any work-

conserving policy (including FIFO) is optimal. If an agent’s deadline expires and there is no agent to

match it with in the queue, this agent is considered abandoned. We build on results from queueing

theory [33] to bound this abandonment rate tightly as follows:

Theorem 4.1. Suppose λ and µ be the (Poisson) arrival rates of buyers and sellers into a facility.
Assume buyer deadlines are distributed as Exponential(κ), and seller deadlines are distributed as
Exponential(γ ). Then the FIFO policy has abandonment rate at most ϵ when:
(1) There is flow balance, that is, λ = µ; and
(2) There is a flow lower bound, that is, λ ≥ 3

2

(
min(γ ,κ)

ϵ 2

)
.

Proof. The behavior of a facility is captured via the following birth-death Markov chain:

consider the state-space {. . . , s(2), s(1), 0,b(1),b(2), . . .}, where 0 = s(0) = b(0) denotes the state
that the facility is empty, while for any n ≥ 1, the state b(n) denotes that there are n buyers queued

up, and state s(n) denote that there are n sellers queued up. For any n ≥ 1, the transition rate from

b(n) to b(n + 1) is λ, and for s(n) to s(n + 1) is µ; on the other hand, the rate of transition from s(n)
to s(n − 1) is nγ + λ, while from b(n) to b(n − 1) is nκ + µ. Here, the term nγ corresponds to the rate

of abandonment of sellers as their deadlines expires, and similarly nκ is the rate of abandonment of

buyers.

Assume that λ = µ. Let q0 denote the steady state probability of the queue being empty. Let

Pr[State = s(n)] = αn Pr[State = b(n)] = βn

where α0 = β0 = q0. We have the following balance equations:

αnnγ = λ(αn−1 − αn) and βnnκ = λ(βn−1 − βn)

Adding these equations, we have:

∑∞
n=1
(αnnγ + βnnκ) = 2λq0. Note that the LHS here is the total

abandonment rate, and since the total arrival rate of agents (buyers and sellers) is 2λ, this means

the abandonment probability is exactly q0.
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Since αn =
λ

λ+nγ αn−1 and βn =
λ

λ+nκ βn−1, we have by telescoping:

αn = q0

λn∏n
j=1
(λ + jγ )

= q0

n∏
j=1

1(
1 + j

γ
λ

)
βn = q0

λn∏n
j=1
(λ + jκ)

= q0

n∏
j=1

1(
1 + j κλ

)
Since these probability values sum to one, this implies

1

q0

= 1 +

∞∑
n=1

(
n∏
j=1

1(
1 + j

γ
λ

) + n∏
j=1

1(
1 + j κλ

) ) (15)

For given κ and γ , this is an increasing function of λ. Therefore, q0 ≤ ϵ translates to a bound of the

form λ ≥ L. An upper bound Lϵ on L can be computed as follows. Let c =
min(γ ,κ)

λ . Then,

1

q0

≥ 1 +

∞∑
n=1

©­­«
n∏
j=1

1(
1 + j

min(γ ,κ)
λ

) ª®®¬
≥

∞∑
n=0

e−cn
2/2 − e−c ≥

∫ ∞

0

e−cx
2/2dx − e−c

=

√
π

2c
− e−c ≥

√
2

3c

where the second inequality uses 1 + x ≤ ex for all x ≥ 0. Therefore, if we insist

√
2λ

3 min(γ ,κ) ≥
1

ϵ ,

this ensures the abandonment probability is at most ϵ . This translates to the following lower bound:

λ ≥ Lϵ =
3

2

·
min(γ ,κ)

ϵ2

□

We have therefore shown that a sufficient condition for bounding the abandonment probability

at any facility by ϵ reduces to saying the flow to the facility is balanced, and facility is thick – there

is a lower bound L = 3

2

(
min(γ ,κ)

ϵ 2

)
on how much demand or supply needs to be routed there. This

reduces the dynamic control problem with atomic agents to a static problem where demand/supply

are fluid – exactly Two-Sided Fac-Loc(L,R) for suitable L that depends on ϵ .

5 CONCLUSIONS AND OPEN QUESTIONS
The advantage of our LP rounding framework for Two-sided Facility Location is that it gracefully

handles more complex variants motivated by the dynamic marketplace setting. For instance, Uber

has recently introduced pricing for buyers with different patience levels [1]. When mapped to our

model, consider the dynamic problem where the platform uses prices and wages to truthfully elicit

patience of agents, and subsequently matches them optimally using Earliest Deadline First (EDF)

scheduling in each virtual market. Motivated by this, we consider an envy-free variant of Two-sided
Facility Location in Appendix C, where each node (or agent type) is composed of sub-types that envy

one another. The platform sets prices/wages for each sub-type so that each agent truthfully chooses

its sub-type. Each sub-type has a weight and the service availability constraints are captured by

flow balance of supply and demand at each virtual market, and a lower bound on the total weight
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routed to each open market. Our LP rounding framework easily extends to yield optimal profit

while relaxing the distance constraint by factor 4.

Our work is a first step in understanding the problem of jointly pricing and scheduling in dynamic

matching facilities. We now mention several open questions that arise. For the facility location

problems, there are other variants that we do not yet have good algorithms for, for instance, general

policies for the envy-free version where the routing can be correlated with the sub-type elicited.

Further, our model imposes a uniform distance bound the match of any agent. Extending it to

average match distance will require new techniques; the basic filtering step in facility location

rounding fails in our case since the demand value itself is a variable. Finally, it is an interesting

question to extend our techniques to when facilities can be priced, and agents choose facilities to

optimize their utility, in particular, extending techniques for stochastic scheduling in one-sided

facilities [14, 15].

For the dynamic marketplace problems, we reduced a special type of scheduling policy that

used facilities to the facility location problems. One can ask: What about approximating the overall
optimal policy? Such a policy need not use facilities, and is poorly understood even when pricing

is not involved (for instance, see [4]). Our model here also assumed Poisson arrivals whose rate

is constant over time. A different approach is to use online algorithms. In particular, it would

be interesting to incorporate pricing and wages into the “online matching with delays" models

considered in [7, 19].
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A EXAMPLES
A.1 Tradeoff Between Surplus, Profit, and Thickness
We show that the surplus optimum solution can open a facility with negative profit. To be more

specific, for any given constant c < 1 we present a simple example in which c fraction of the total

surplus is generated by a facility with negative profit.

Let {v,v ′} be two nodes infinitely far apart. Let L be the lower bound for the total amount of

demand (supply) at each open facility. For node v , assume that the volume of demand and supply

are dv = sv = L, the valuation of buyers is uniformly distributed over the interval [2, 3], and the

cost of sellers is uniformly distributed over the interval [0, 1]. For node v ′, assume the volume of

demand and supply are dv ′ = sv ′ = L, the valuation of buyers is uniformly distributed over the

interval [c ′ − 1, 2c ′ + 1], and the cost of sellers is uniformly distributed over the interval [0, c ′]
where c ′ = 2c

1−c . We claim that the optimum solution for this example is to open a facility at each of

the nodes and set the price and wage at node v to 2 and 1 respectively, and set the price and wage

at node v ′ to c ′ − 1 and c ′ respectively.
First, we show that this solution is feasible. At each node the price is not more than the valuation

of any arriving buyer. Therefore, all the buyers choose to participate. Similarly, since the wage

is not less than the cost of any arriving seller, all the sellers choose to participate. This solution

satisfies flow balance for each of the facilities because the volume of sellers and buyers are equal

at the corresponding node, and all of them choose to participate. In addition, flow lower bound is

also satisfied, since this volume is at least L. Finally, the profit of the facility at v is dv and the loss

of the facility at node v ′ is dv ′ . Therefore, the total profit is 0 and profit of the facility at node v
compensates for the loss at the other facility.

Now, we show that the welfare of the facility with negative profit is a fraction c of the total welfare.
The welfare at nodev is dv × (2.5− 0.5) = 2L and the welfare at nodev ′ is dv ′ × (3c

′/2−c ′/2) = c ′L.
Therefore, c ′/(c ′ + 2) = c fraction of the welfare is generated at node v ′.

Finally, we need to show that this solution is optimum. The nodes are far from each other and

we cannot send the buyers and sellers from different nodes to a common facility. The only option

for opening a facility at each of the nodes is to set the price and wage at each node in a way that

all the arriving buyers and sellers choose to participate (otherwise, the flow lower bound cannot

be satisfied). Therefore, this problem has three feasible integral solutions: no facility is opened, a

facility at node v is opened, and a facility at each of the nodes is opened. Note that the solution

which only opens a facility at v ′ is not feasible because it does not satisfy budget balance – in order

to generate L volume of demand (supply), the platform must lose money here. The welfare of those

solutions are 0, 2L, and (2 + c ′)L respectively. Therefore, the third solution is optimum.

A.2 Integrality Gap Example in Section 2
Now we slightly modify the previous example to show that the LP has unbounded integrality

gap. We only change the distribution of the valuation of the buyers at node v ′. The valuation

of the buyers is now uniformly distributed over the interval [c ′ − 1 − ϵ, 2c ′ + 1 + ϵ] for a small

positive constant ϵ . After this change, the integral solution which opens a facility at each node is

not feasible anymore because it violates weak budget balance constraint. Therefore, the optimum

integral solution has 2L welfare.

On the other hand we claim that there is a fractional solution which has ( 1

1+ϵ ×
2c

1−c + 2)L welfare.

Set the price and wage at node v to 2 and 1 and open the facility at that node (yv = 1). For the

node v ′ we can only open the facility partially. Set yv ′ =
1

1+ϵ and the price and wage at node v ′ to

c ′ − 1 − ϵ and c ′ with probability
1

1+ϵ and to pmax and 0 with probability
ϵ

1+ϵ . In other words, set

αv ′1 = βv ′1 =
1

1+ϵ and αv ′0 = βv ′0 =
ϵ

1+ϵ . This solution is feasible and generates ( 1

1+ϵ ×
2c

1−c + 2)L
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welfare, while the optimum integer solution generates only 2L welfare. Note that c can be arbitrarily

close to 1 and therefore the integrality gap is unbounded.

B SOLVING THE LP FORMULATION IN SECTION 3
We now show how to use the Ellipsoid algorithm to efficiently solve the LP formulation in Section 3

to arbitrary additive accuracy even when the demand and supply distributions are continuous,

so that the sets Qj (resp. Rj ) are continuous. First we get rid of weak budget balance by take a

Lagrangian of surplus and the profit. For any parameter λ ≥ 0, define:

Vλ
j (q) = Vj (q) + λdjqF

−1

j (q)

and

Cλj (r ) = Cj (r ) + λsjrH
−1

j (r )

Since we assumed regular supply and demand distributions, it is easy to show that Vλ
j (q) is

concave in q and Cλj (r ) is convex in r . The Lagrangian objective is then:

Maximize

∑
j ∈V

©­«
∑
q∈Qj

∑
i ∈BR (j)

zi jqV
λ
j (q) −

∑
r ∈Rj

∑
i ∈BR (j)

zi jrC
λ
j (r )

ª®¬∑
q∈Qj

∑
i ∈F zi jq ≤ 1 ∀j ∈ V∑

r ∈Rj
∑

i ∈F zi jr ≤ 1 ∀j ∈ V∑
q∈Qj zi jq ≤ yi ∀j ∈ V , i ∈ BR (j)∑
q∈Rj zi jr ≤ yi ∀j ∈ V , i ∈ BR (j)∑

j ∈BR (i)
dj

∑
q∈Qj

qzi jq =
∑

j ∈BR (i)
sj

∑
r ∈Rj

rzi jr ∀i ∈ F∑
j ∈BR (i)

dj
∑

q∈Qj
qzi jq ≥ Lyi ∀i ∈ F

zi jq , zi jr ,yi ≥ 0 ∀i, j,q, r
The dual is the following:

Minimize

∑
j ∈V

(aj + bj )

aj + ηi j + djq(ζi − ρi ) ≥ Vλ
j (q) ∀j ∈ V , i ∈ BR (j),q ∈ Qj

bj + θi j − sjrζi + C
λ
j (r ) ≥ 0 ∀j ∈ V , i ∈ BR (j), r ∈ Rj
Lρi ≥ ηi j + θi j ∀j ∈ V , i ∈ BR (j)

ηi j ,θi j , ρi ≥ 0 ∀j ∈ V , i ∈ BR (j)
For fixed dual variables, sinceVλ

j (q) is concave in q and Cλj (r ) is convex in r , it is easy to check

that for each i, j, the separation oracle either involves maximizing a concave function in q (for the

first set of constraints) or minimizing a convex function in r (for the second set of constraints). In

either case, finding the separating hyperplane involves one-dimensional convex optimization. This

implies the LP admits to an efficient additive approximation even for continuous distributions over

a bounded domain. We omit the standard details.

C ENVY-FREE PRICING AND PROFIT MAXIMIZATION
The idea from Section 2 of independently scaling up/down LP variables corresponding to individual

facilities is fairly general, and leads naturally to approximation algorithms for more complex

variants that are motivated by different scheduling policies for the dynamic marketplace problem.

In this section, we present one such formulation that generalizes the model discussed in Section 2. In
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Appendix C.2, we show that this model corresponds to the dynamic marketplace setting when the

platform uses prices to elicit patience of agents, and uses Earliest Deadline First (EDF) scheduling

in each virtual market.

We assume each node (type) j of buyer/seller has a collection of subtypes Sj . There is a DAG

G j (Sj ,Ej ) onSj that captures envy. If there is an edge (k1,k2) ∈ Ej , then sub-type k1 envies sub-type

k2. The platform announces a price (resp. wage) pjk (resp.w jk ) for each sub-type k ∈ Sj . In order to

preserve incentive compatibility, we require that if (k1,k2) ∈ Ej , then pjk1
≤ pjk2

; resp.w jk1
≥ w jk2

.

This prevents an agent of sub-type k1 from reporting its type to be k2. Note that since the graphG j
is a DAG, such a price (resp. wage) assignment is feasible. We term such an assignment of prices

(resp. wages) at each j as a price (resp. wage) ladder.
As before, there is a non-increasing demand function djkFjk (pjk ) for each buyer sub-type k ∈ Sj ,

and a non-decreasing supply function sjkHjk (w jk ) for each seller sub-type k ∈ Sj . Each sub-type

k ∈ Sj is also associated with a weight Gjk . The platform learns which sub-type any agent chooses.

Lottery Pricing and Assignment. The platform opens a set of “virtual markets". For each node j
and k ∈ Sj , buyers (resp. sellers) arriving at the node and choosing that type are probabilistically

routed to virtual markets which are within distance R from the node. We assume the platform shows

a lottery over price (resp. wage) ladders as follows: For each node j ∈ V the platform maintains

a distributionZj of virtual markets within distance bound R, and for each virtual market in this

set, it maintains a distribution Li j of price (resp. wage) ladders. Given an agent arriving at this

node, the platform first chooses a market i fromZj , and then a ladder from Li j and shows it to the

agent. After the agent chooses the price or wage (hence revealing its sub-type), she is routed to

market i . We note that the routing policy makes the market the agent is routed to be independent

of the sub-type elicited. Though this assumption is somewhat restrictive, it prevents the agent from

choosing a sub-type to optimize for the virtual market they get assigned to.

Service Availability Guarantee. As before, we capture service availability by ensuring that each

virtual market i has balanced supply and demand, and is also sufficiently thick. However, we now
capture thickness by a lower bound L on the total weight of the sub-types assigned there. Formally,

let xi jk denote the expected flow of sub-type k ∈ Sj to virtual market i .

Flow Balance. The expected amount of supply and demand assigned there are the same.

Weight Lower Bound. The expected weight assigned there is large:

∑
j ∈V ,k ∈Sj Gjkxi jk ≥ L.

The objective is to maximize the expected profit of the solution. We term this problem Envy-Free

FL(L,R). We note that similar ideas can be used to maximize other objectives; we present the profit

objective for simplicity.

In the dynamic marketplace setting presented in Appendix C.2, the sub-types correspond to

different deadlines, and the weight of a sub-type is precisely the deadline value. We show there

that the weight lower bound corresponds to the condition for the EDF scheduling policy to have

low abandonment rate.

C.1 Approximation Algorithm
Our LP formulation and rounding are similar to the one for Two-Sided Fac-Loc(L,R), and we

highlight the differences. As before, we assume there is a candidate set P andW of prices and

wages for each node, respectively. The set of all candidate virtual markets in the metric space is

denoted by F ; since we assume the metric space is explicitly specified as input, we set F = V . For

each node j, BR (j) ⊆ F denotes the set of all the virtual markets i ∈ F such that c(i, j) ≤ R. For
each virtual market i , define BR (i) as the set of all the nodes j ∈ V such that c(i, j) ≤ R.
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C.1.1 Linear Programming Relaxation. Variables. For each candidate virtual market i ∈ F , let
yi ∈ {0, 1} be the indicator variable that a virtual market exists at that location in the metric space.

These are the only integer variables in our formulation. Variables xdi j and x
s
i j are non-zero only if

yi = 1 and i ∈ BR (j). In this case, those are respectively the probability that buyers and sellers at

node j are routed to virtual market i . Note that there is some probability that all prices at node j
are set to pmax, which corresponds to not routing node j anywhere. Let zi jkp be the probability that

buyers at node j with sub-type k ∈ Sj are assigned to virtual market i and offered price p. Similarly,

zi jkw denotes the probability that sellers at node j with sub-type k are assigned to virtual market i
and offered wagew .

Objective and Constraints. The objective is to maximize the profit.

max

∑
j ∈V

∑
k ∈Sj

∑
i ∈BR (j)

©­«
∑
p∈P

pdjkFjk (p)zi jkp −
∑
w ∈W

wsjkHjk (w)zi jkw
ª®¬ (16)

The following constraints connect the variables together. We present these constraints only for

buyers (that is, p ∈ P); the constraints for sellers is obtained by replacing p and xd withw ∈ W
and xs . Since we route the buyers at node j probabilistically to one of the virtual markets, or to no

market by offering all deadlines a price pmax:∑
i ∈BR (j)

xdi j ≤ 1 ∀j ∈ V (17)

Next, a price should be offered to each buyer with sub-type k at node j assigned to market i:∑
p∈P

zi jkp = xdi j ∀j ∈ V , i ∈ BR (j),k ∈ Sj (18)

Next, if demand is fractionally routed from j to i , then i should be open and within distance R:

xdi j ≤ yi ∀j ∈ V , i ∈ BR (j) (19)

We next enforce that the prices and wages form a distribution over ladders. Note that the policy

first chooses the virtual market to route to, and then chooses from a distribution over ladders. This

reduces to a stochastic dominance condition for the distributions corresponding to z:∑
p′≤p,p′∈P

zi jkp′ ≤
∑

p′≤p,p′∈P

zi jk ′p′ ∀p ∈ P, (k,k ′) ∈ Ej ,∀j ∈ V ,∀i ∈ BR (j) (20)∑
w ′≤w,w ′∈W

zi jkw ′ ≥
∑

w ′≤w,w ′∈W

zi jk ′w ′ ∀w ∈ W, (k,k ′) ∈ Ej ,∀j ∈ V ,∀i ∈ BR (j) (21)

Finally, we encode the service availability constraints. We first capture flow balance at each
virtual market: the rate of arrival of buyers and sellers are equal.∑

j ∈BR (i)

∑
k ∈Sj ,p∈P

djkFjk (p)zi jkp =
∑

j ∈BR (i)

∑
k ∈Sj ,w ∈W

sjkHjk (w)zi jkw ∀i ∈ F (22)

We finally encode weighted flow lower bound on the total deadline of buyers and sellers at the

market:

∑
j ∈BR (i)

∑
k ∈Sj

Gjk
©­«
∑
p∈P

djkFjk (p)zi jkp +
∑
w ∈W

sjkHjk (w)zi jkw
ª®¬ ≥ Lyi ∀i ∈ F (23)
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C.1.2 Rounding. If we ignore the integrality constraints onyi , the above is a linear programming

relaxation of the problem. We will now show how to round the resulting solution.

We generalize Lemma 3.4 using the following definitions of fully utilized. We say that j ∈ V is

fully demand utilized if
∑

i ∈BR (j) x
d
i j = 1; similarly, it is fully supply-utilized if

∑
i ∈BR (j) x

s
i j = 1. We

say j is partially demand-connected to market i ∈ F if xdi j > 0, and partially supply-connected if

xsi j > 0. Let JD (i) denote the set of nodes that are partially demand-connected to i ∈ F , and JS (i)
be the set that is partially supply-connected. As before, we define the profit of a virtual market

i ∈ F as:

Ri =
∑

j ∈BR (i)

∑
k ∈Sj

©­«
∑
p∈P

pdjkFjk (p)zi jkp −
∑
w ∈W

wsjkHjk (w)zi jkw
ª®¬

Lemma C.1. In the LP optimum, for any i ∈ F , Ri ≥ 0. Further, if Ri > 0, either yi = 1; or there
exists j ∈ JD (i), s.t. j is fully demand-utilized; or there exists j ∈ JS (i), s.t. j is fully supply-utilized.

The proof of the above lemma follows the same argument as Lemma 3.4: If a market has negative

Ri , we can set all its variables to zero without violating any constraints. If the condition in the

Lemma is violated for i ∈ F , then we can increase all variables corresponding to i by the same factor

till the condition is satisfied. Since all constraints involve single markets, this process preserves

them while increasing the objective. For this transformation to work, it is crucial Constraints (20)

are defined separately for each (i, j) pair; in other words, we crucially need to assume the policy

chooses a market first and then chooses a distribution over ladders for that market.

The rounding now proceeds in the same way as in Section 2: In Phase 1, we identify untouched

and fully utilized j and merge all i to which it is partially connected to one market. Note that the

total yi of these markets is at least 1 by the LP constraints. At the end of this phase, we move the

remaining partially open i as in Phase 2 of the rounding scheme. This preserves the profit, and

satisfies the flow balance and lower bound constraints (BR is replaced by B4R in the constraints),

yielding the following theorem:

Theorem C.2. There is a feasible solution {x̄ , ȳ, z̄} to the above linear program, whose objective is
optimal, and all of whose constraints are satisfied. For each i ∈ F , either ȳi = 0 or ȳi ≥ 1.

Final Policy. The final choice of prices and wages, and the routing policy is the following. We

present it only for buyers; the policy for sellers is symmetric.

• At node j, choose a market i with probability x̄i j . If no market is chosen, the price is set to

pmax.

• If market i is chosen, choose α uniformly at random in [0, 1]. For each k ∈ Sj , find pk ∈ P

such that

∑
p′<pk ,p′∈P

z̄jkp′
x̄i j
≤ α and

∑
p′≤pk ,p′∈P

z̄jkp′
x̄i j
> α . Post prices {p1,p2, . . . ,pK }.

• If the buyer accepts price pk , route her to virtual market i .

Constraints (20) imply that regardless of the choice of α , the prices {p1,p2, . . . ,pK } in the second

step form a ladder, so that p1 ≥ p2 ≥ · · · ≥ pK . A similar statement holds for wages. Therefore, the

second step produces a lottery over ladders. Further, if Zi jkp denote the event that the price for

sub-type k ∈ Sj is p and market i is chosen, then it is an easy exercise to check that E[Zi jkp ] = z̄jkp .
Therefore, the randomized policy exactly implements the solution found in Theorem C.2, so that it

maximizes profit. We omit the details and state the final theorem.

Theorem C.3. There is a polynomial time (4, 1) approximation for Envy-Free FL(L,R). That is, we
obtain the optimal expected profit by relaxing the distance constraint by a factor of 4.
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C.2 Justification via Dynamic Marketplace Model
In this section, we present a dynamic marketplace model that justifies the problem statement of

Envy-Free FL. As in Section 4, we assume buyers and sellers have an inherent patience level or

deadline. If they are not matched within their deadline, they drop out of the system. We assume

every agentm is associated with a patience level νm ; unlike Section 4, we do not assume these

are Exponentially distributed. The platform advertises a fixed set of patience levels, or deadlines,

denoted by Sj = {νj1,νj2, . . . ,νjK }, which is a guarantee on the time by which a buyer or seller

choosing that deadline is guaranteed to bematched.We assume νj1 ≤ νj2 ≤ · · · ≤ νjK . For simplicity,

we use k ∈ Sj and νk ∈ Sj interchangeably.

Incentive-compatibility.We assume the platform sets a lottery of prices and wages at each node

j , that are independent of time. Consider the issue of eliciting deadlines truthfully. Consider buyers

first. At node j, suppose the platform offers price pjk for deadline νjk . Every buyer can choose one

deadline in Sj , in which case he pays price pjk , and is guaranteed to be matched within time νjk
from his arrival. We assume any buyerm has very large negative utility for being matched after his

patience level νm , therefore he will choose a k such that νjk ≤ νm . Subject to this, he will choose

k with smallest pjk , since this maximizes his valuation minus price. A symmetric model can be

posited for sellers, where we replace price with wage, and the seller chooses the largest wage such

that the corresponding deadline is smaller than his own patience level.

Since the goal of the platform is to elicit patience levels truthfully, the platform chooses a price
ladder pj1 ≥ pj2 ≥ · · · ≥ pjK and wage ladderw j1 ≤ w j2 ≤ · · · ≤ w jK at each node j. This ensures
that agents with νm ∈ [νjk ,νjk+1] report deadline νjk .

Each deadline level νjk ∈ Sj gets associated with non-increasing demand function djkFjk (pjk ),
which is the Poisson rate at which buyersm with patience νm ∈ [νjk ,νjk+1] arrive when the price

of deadline νjk is pjk . Similarly, deadline level k ∈ Sj is associated with a non-decreasing supply

function sjkHjk (w jk ), which is the Poisson rate at which sellersm with patience νm ∈ [νjk ,νjk+1]

arrive when the wage for deadline νjk isw jk . These deadline levels correspond to the sub-types

described before.

Scheduling Policy. As in Section 4, the platform opens a set of “virtual markets". For each node

j and deadline level k , buyers (resp. sellers) arriving at the node and choosing that deadline are

probabilistically routed to virtual markets which are within distance R from the node. Buyers

and sellers arriving at the virtual market are queued up, and optimally matched to minimize

abandonment. Since the platform knows which deadline was chosen by the agent, the optimal

matching policy is now a variant of Earliest Deadline First (EDF): When the deadline of some buyer

(resp. seller) expires, it is matched to that seller (resp. buyer) in the queue whose deadline will

expire earliest in the future. If an agent’s deadline expires and there is no agent to match it with in

the queue, this agent is abandoned. It is an easy exercise to show that this policy maximizes the

number of matches made in any virtual market.

As in Section 4, the goal of the platform is to design a joint pricing and scheduling policy to

maximize profit, while ensuring bounded match distance and bounded abandonment probability.

C.2.1 Bounding Abandonment Rate. We will now show that the weight lower bound can be

interpreted as a sufficient condition for the abandonment rate of the EDF policy to be at most ϵ ,
where the weight of a sub-type is simply its deadline value.

Themain technical assumptionwe require in this part is that the desired abandonment probability,

ϵ is small, in particular that ϵ ≪ νmin

νmax

. As noted above, the scheduling policy within a virtual market

is a variant of EDF. Unlike the Patience-oblivious model where the behavior of a virtual market
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could be modeled as a variant of aM/M/1 queue, the optimal abandonment probability in a two-

sided EDF queue clearly depends on the entire distribution of deadlines of buyers and sellers,

which in turn depends on the pricing scheme and assignment policy. However, we crucially need a

closed-form bound on this probability in order to plug into an LP relaxation for the overall problem.

We use recent results from queueing due to Kruk et al. [27] to construct such a closed-form bound,

whose very existence we find non-trivial and surprising!

Kruk et al. [27] present an approximation to the abandonment probability of a one-sided queue

M/M/1 queue with EDF scheduling. They approximate the queueing process via a reflected Brown-

ian motion.We adapt their result to our setting, and rephrase it below. Consider the queue associated

with a virtual market. Let S̄ denote the average deadline of a seller arriving to this queue, and D̄
denote the average deadline of a buyer arriving to the queue. Note that the distribution of deadlines

as well as arrival rate depends on the overall pricing and assignment policies.

Recall that we assumed ϵ is small, in particular that ϵ ≪ νmin

νmax

. We first enforce that supply and

demand arrive to the queue at the same rate; call this rate λ. Next suppose w.l.o.g. that D̄ > S̄ .
Consider the policy that instantaneously matches arriving sellers to the queued buyer with earliest

deadline; if the queue is empty, the seller is abandoned. This exactly mimics a one-sided M/M/1
queue with EDF scheduling. We quote the following result informally from [27]:

Consider a one sidedM/M/1 queuewith arrival rate and service rate equal to λ. Suppose
deadlines of jobs are independently distributed with mean D̄, and the scheduler uses

the EDF policy. Then holding λ and
νmax

νmin

fixed, in the regime where νmin becomes very

large, the abandonment probability approaches
1

λD̄ .

Though part of their argument is heuristic, they perform simulations to show that this approxi-

mation is indeed accurate. Since we need abandonment probability of
1

λD̄ to be at most ϵ ≪ 1, and

since we assumed
νmin

νmax

≫ ϵ , this automatically enforces that all deadlines are much larger than the

mean inter-arrival time, satisfying their precondition for our setting.

Since the optimal policy for a two-sided queue only has lower abandonment probability, we use

1

λD̄ as an upper bound on this quantity. Since we assumed D̄ ≥ S̄ , we will instead use
2

λ(D̄+S̄ ) as the

upper bound, which we will set to be at most ϵ .

We now show that this is the best possible upper bound that only depends on D̄ and S̄ . Suppose
buyers deadlines are deterministic with value D̄, and seller deadlines are deterministic with value S̄ .
Then the optimal policy matches without waiting in a FIFO fashion. This means the loss probability

assuming the queue has buyers is the same as that of a M/M/1 queue with deadlines D̄, which
from [11] is exactly

P1 =
1

1 + λD̄
Similarly, when there are sellers in the queue, the loss probability is

P2 =
1

1 + λS̄

Conditioned on the queue being empty and a buyer arriving, the expected time after which the

queue next becomes empty isTb =
1

P1

= 1+ λD̄, in which period the loss probability is P1. Similarly,

if a seller arrives when the queue is empty, the expected time after which the queue again becomes

empty isTs =
1

P2

= 1 + λD̄, in which period the loss probability is P2. Since a buyer or seller arrives

with equal probability when a queue is empty, the expected loss probability is

P =
TbP1 +TsP2

Tb +Ts
=

2

2 + λD̄ + λS̄
≈

2

λ
(
D̄ + S̄

)
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assuming λ(D̄ + S̄) ≫ 1.

In summary, each virtual market needs to satisfy the following two sufficient conditions for its

abandonment probability to be at most ϵ :

(1) The rate of arrival of supply and demand should be the same; call this rate λ.
(2) If S̄ denote the average deadline of a seller, and D̄ denote the average deadline of a buyer,

then λ(D̄ + S̄) ≥ 2

ϵ .

Therefore, to reduce the scheduling policy to an instance of Envy-Free FL(R, L), we set Gjk = νjk
and L = 2

ϵ , so that the second condition above translates to the weight lower bound. This justifies the

Envy-Free FL(R, L) problem as capturing the optimal scheduling policy for the dynamicmarketplace

problem presented above.

Note that the resulting lower bound on λ derived by the above condition is a significant improve-

ment over the patience-oblivious case, since the lower bound now depends on
1

ϵ instead of
1

ϵ 2
. This

intuitively means that in order to achieve comparable profit and abandonment probability, we can

aim for a higher quality of match by reducing the radius R. A similar observation that even partial

information about deadlines significantly reduces abandonment is made in [4], albeit for a different

model.
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